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Abstract. The cross-section for the dd→ 4Heππ reaction is estimated near threshold in a two-step model
where a pion created in a first interaction produces a second pion in a subsequent interaction. This approach,
which describes well the rates of 2π and η production in the pd→ 3Heππ and dd→ 4He η reactions, leads
to predictions that are much too low compared to experiment. Alternatives to this and the double-∆ model
will have to be sought to explain these data.

PACS. 13.60.Le Meson production – 14.40.Aq π, K, and η mesons

1 Introduction

Over the last few years there has been increased exper-
imental interest in double-pion production near thresh-
old in several hadronic reactions. These include studies
in pion-proton [1] and proton-proton collisions [2], as well
as in the pd→ 3Heππ [3–5] and dd→ 4Heππ [6–8] reac-
tions. For excess energies Q below about 100MeV one sees
no sign of the low-mass s-wave ππ enhancement, known
as the ABC effect [9], and the maxima in the invariant
mass distributions tend more to be pushed to the highest
possible values.

Due in part to an isospin filter effect, the most spec-
tacular manifestation of the ABC is to be found in the
case of dd→ 4Heππ for Q ≈ 200–300MeV [10]. These
cross-section data, as well those representing the deuteron
analysing powers [11], can be well understood within a
model where there are two independent pion productions,
through the pn → dπ0 reaction, with a final-state inter-
action between the two deuterons to yield the observed
α-particle [12]. Since the pn→ dπ0 amplitudes are domi-
nated by p-wave production, driven by the ∆ isobar, this
leads to much structure in the predictions. Although such
double-∆ effects are generally observed in the medium en-
ergy data [10,12], there is little evidence of them nearer
to threshold [6,7,13]. Furthermore, the cross-sections mea-
sured at low energies are over an order of magnitude higher
than the predictions of models behaving like the square of
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p-wave production, where the amplitudes must be propor-
tional to Q.

In an alternative approach to the pd→ 3Heππ reac-
tion, the low-energy cross-sections have been discussed
in terms of a two-step model, where a pion is produced
through a pp → dπ+ reaction on the proton in the
deuteron, with a further pion being created in a secondary
π+n → pπ0π0 reaction [14]. There are, of course, other
contributions related to this through isospin invariance.
Semi-phenomenological models of the π+n → pπ0π0 am-
plitudes show strong s-wave production, behaving rather
like a contact term, plus another contribution involving
the decay chain N∗(1440) → ∆(1232)π → Nππ [15].
The s-wave term is sufficient, in the two-step model, to
lead to reasonable agreement with the available data on
the pd→ 3Heππ total cross-section. Moreover, combined
with p-waves required by the decay chain, it reproduces
the shift of the mass spectrum away from the ABC region
towards that of higher missing masses [3,4]. It is therefore
reasonable to ask whether a similar approach could not be
usefully tried for the low-energy dd→ 4Heππ reaction.

The two-step model with an intermediate pd→ 3Heπ0

step has in fact been applied successfully to the produc-
tion of η-mesons in the dd→ 4He η reaction near thresh-
old [16], where it reproduces reasonably well the magni-
tude of the total cross-section [17,18]. The approach is
here extended in sect. 2 to describe the dd→ 4Heππ re-
action, using the same πN → ππN amplitudes as those
that worked for pd→ 3Heππ. The other element that is
crucial for the evaluation of this model is the cluster de-
composition of the α-particle in terms of 3Hen/3H p con-
stituents. This is discussed in sect. 3, where we rely on the
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work of the Argonne group [19]. The results presented in
sect. 4 show that the model is capable of describing the
shape of the ππ effective mass distribution, without the os-
cillatory structure predicted by the double-∆ model [12].
However, the total cross-section estimates fall over an or-
der of magnitude below the experimental results found
at low energies [6,7,13]. These data have low statistics
and limited acceptance, though they will be supplemented
by more precise results expected soon from CELSIUS [8].
Since neither this nor the double-∆ model gets even close
to the observed production rates, alternative approaches
are necessary.

2 The reaction model

The two-step model for the dd→ 4Heππ amplitudes, in
terms of those for pd → 3Hπ+ and π+n → (ππ)0p, is
depicted in fig. 1. Contributions involving intermediate
3He and π0/π− are all related to the results for this di-
agram through isospin invariance. Due to the identical
nature of the incident deuterons, there is a similar set of
diagrams where the initial production takes place on the
upper deuteron.

The cross-section corresponding to such a diagram
has been evaluated for the dd → α η reaction [16] and
we follow closely the techniques used there. The unpo-
larised dd→ 4Heππ differential cross-section is expressed
in terms of the Lorentz-invariant matrix element M
through

dσ =
pα

144pdW 2

1

(2π)4

∑

spins

| M |2 kππ dmππ dΩα

dΩππ

4π
.

(2.1)
Here pd and pα are the initial and final momenta in the
overall cm system where the total energy isW . The angles
Ωα are also in the total cm system, whereas the ππ relative
momentum kππ and its angles Ωππ are evaluated in the
dipion rest frame, where the total energy is mππ.

The matrix element of fig. 1 involves the integration of
the pion propagator between the two production vertices
over the two Fermi momenta k and q. If initially we ne-
glect the deuteron D-state and the Lorentz boost of the
wave functions, this can be written as

M =

√

2

3m2
p

1

(2π)3

∫

d3k d3q
mn

En(pn)

mt

Et(pt)

× i

q2π −m2
π + iε

M̃N , (2.2)

where the particle masses are denoted by mi. The reduced
nuclear matrix element is

M̃N = Tr

[−1√
2
σ · εd {−A p̂d · εd ′ − iB p̂d · (εd ′ × σ)}

× −1√
2
a(mππ, Q)σ · pπ

]

ϕ̃d(q) ψ̃
†
α (k), (2.3)

where the (εd, εd ′) are the polarisation vectors of the two
incident deuterons and the kinematics are defined as in

pp

n
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Fig. 1. Two-step model for the production of π+π− and π0π0

pairs through the dd→ 4Heππ reaction. There are also con-
tributions related to this by isospin in addition to the terms
arising from the interchange of the two deuterons.

the figure. The S-state momentum-space wave functions
for the deuteron and the triton-proton configuration of the
α-particle are denoted by ϕ̃d(q) and ψ̃α (k), respectively.

In the forward and backward (cm) directions, only two
terms are needed to describe the spin structure of the
dp→ 3Heπ0 amplitude. Using two-component spinors to
denote the 3He (uh) and proton (up), this reads

M(dp→ 3Heπ0) = u †
h [A p̂d · εd + iB p̂d · (εd × σ)]up,

(2.4)
where pd and pπ are the momenta of the incident deuteron
and produced pion, respectively. In our normalisation, the
unpolarised differential cross-section and deuteron tensor
analysing power t20 are given in terms of the two dimen-
sionless spin amplitudes A and B by

dσ

dΩ
=

1

3(8πW )2
pπ
pd

[

| A |2 +2 | B |2
]

,

t20 =
√
2

[ | B |2 − | A |2
| A |2 +2 | B |2

]

, (2.5)

and these observables have been well measured in collinear
kinematics at Saturne [20].

For deuteron kinetic energies of interest here, the back-
ward (θpπ = 180◦) values of t20 are strongly negative, so
that |A| À |B|. In the 0.5–0.8GeV range the results may
be represented by

|A|2 ≈ −565.6 + 2318.7Td − 2869.9T 2
d + 1122.9T 3

d ,

|B|2 ≈ −197.9 + 1144.9Td − 2113.0T 2
d + 1261.8T 3

d , (2.6)

where the deuteron kinetic energy Td is measured in GeV.
The spin structure of the π−p → π0π0n amplitude is

unique near threshold:

M(π−p→ π0π0n) = a(mππ, Q)u†nσ · pp up. (2.7)

In terms of the amplitude a, the unpolarised differential
cross-section is

dσ(π−p→ π0π0n) =
1

64π3

pp pn
W 2

πN

|a(mππ, Q)|2 kππ dmππ.

(2.8)
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Here, pp and pn are, respectively, the initial and final nu-
cleon momenta, WπN the cm energy in the πN system,
and Q = WπN − 2mπ −mN the excess energy above the
two-pion threshold.

The low-energy data in different isospin channels are
well described by the Valencia model [15] and this allows
one to project out the I = 0 combination required as input
in eq. (2.3). The results can be parameterised as

1

64π3
|a(mππ, Q)|2 = (1.092− 0.0211Q+ 0.00015Q2)

+(4.18 + 0.0075Q− 0.00098Q2)x

+(47.65− 0.935Q+ 0.00743Q2)x2 µb/MeV2, (2.9)

where x = (mππ − 2mπ)/mπ.
Due to small recoil corrections, this parameterisation

should be used at an excess energy of Q′, where

Q′ ≈ xmπ + (Q− xmπ)(1 + 2mπ/mα)/(1 + 2mπ/mp).
(2.10)

Since large Fermi momenta are not required in the two-
step model, the dp→ 3Heπ0 and πN → ππN amplitudes
can be taken outside of the integration in eq. (2.2) with
the values pertaining at zero Fermi momenta. Considering
only the positive-energy pion pole, to first order in k and
q one is left with a difference between the external and
internal energies of

∆E = Eext − Eint = ∆E0 + k ·W + q · V , (2.11)

where

∆E0 = E0
π − Eπ, (2.12)

with

E0
π = 2Ed − Et − En − Eπ. (2.13)

Here (Eπ, Ed, Et, En) are the pion, deuteron, triton, and
nucleon total energies, evaluated, respectively, at mo-
menta − 3

4
pα − 1

2
pd, pd,

1
2
pd, and

3
4
pα.

The relativistic relative velocity vectors V and W de-
pend only upon external kinematic variables:
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4
pα − 1

2
pd)− vn( 1

2
pd)

= − 3

4Eπ
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1

2

[

1

Eπ
+

1
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]

pd,

W = −vπ(− 3
4
pα − 1

2
pd) + vt(

3
4
pα)

=
3

4

[

1

Eπ
+

1

Et

]

pα +
1

2Eπ
pd. (2.14)

The resulting form factor

S(V ,W ,∆E0) =

−i
∫

d3k d3q
1

∆E0 + k ·W + q · V + iε
ψ̃∗(k) ϕ̃(q)

= (2π)3
∫ ∞

0

dt eit∆E0 ψ∗(−tW )ϕ(tV ), (2.15)

then involves a one-dimensional integration over wave
functions in configuration space. In terms of this form fac-
tor the dd→ 4Heππ differential cross-section becomes

dσ =
Nα

48 (2π)10
pαpd

[mpW (Eπ + E0
π)]

2
|a(mππ, Q)|2

× |S(V ,W ,∆E0) + (pd ⇔ −pd)|2

×
{

| A |2 +2 | B |2
}

kππ dmππdΩα, (2.16)

where Nα is the normalisation of the 4He wave function
and the extra form-factor contribution coming from the
interchange of the two incident deuterons is indicated. All
isospin factors have been included, but it must be stressed
that in eq. (2.16) A and B refer to the dp → 3Heπ0

and π−p → π0π0n charge states, respectively. Isospin in-
variance dictates that π+π− production in dd→ 4Heππ
should be a factor of two larger than π0π0, but this sim-
ple rule is significantly modified near threshold by phase
space factors arising from the pion mass difference.

Two further refinements need to be implemented in
eq. (2.16) before comparing its predictions with experi-
ment. Although the final α-particle is slow in the cm sys-
tem, relativistic corrections cannot be neglected for the
incident deuterons. These can be included by boosting
V‖, the longitudinal component of V , i.e. by taking as
argument of the deuteron wave function [16]

V ′ = (V⊥, EdV‖/md). (2.17)

Secondly, the effects of the deuteronD-state have to be
considered and this can be accomplished by introducing
two form factors:

SS,D(V ′,W,∆E0)

= 2π2

∫ ∞

0

dt eit∆E0 Ψ∗(−tW )ΦS,D(tV
′), (2.18)

where ΦS,D(r) are the deuteron S- and D-state configu-
ration space wave functions normalised by

∫ ∞

0

r2
{

ΦS(r)
2 + ΦD(r)

2
}

dr = 1. (2.19)

The S- and D-state form factors enter in different com-
binations for the A and B amplitudes and, after making
kinematic approximations in respect of the D-state com-
bined with the Lorentz boost, one finds

dσ =
Nα

48 (2π)10
pαpd

[mpW (Eπ + E0
π)]

2
|a(mππ, Q)|2 kππ

×
{

| A |2
∣

∣

∣
SS(V ′,W,∆E0)−

√
2SD(V ′,W,∆E0)

∣

∣

∣

2

+2 | B |2
∣

∣

∣

∣

SS(V ′,W,∆E0) +
1√
2
SD(V ′,W,∆E0)

∣

∣

∣

∣

2
}

×dmππ dΩα, (2.20)

where, as in eq. (2.16), it is assumed that contributions
from form factors resulting from the interchange pd ⇔
−pd have been included.
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Fig. 2. Unnormalised 4He : 3H p overlap function as a func-
tion of the 3H-p separation distance. For the purposes of pre-
sentation, this has been multiplied by r eαr, where the charge
average α = 0.854 fm−1. The results of ref. [19] have been pa-
rameterised as in eq. (3.1).

3 The 4He wave function

Over the last few years there has been remarkable progress
in ab initio calculations of the structure of light nuclei us-
ing variational Monte Carlo techniques [19]. Starting from
realistic nucleon-nucleon potentials, it has been possible to
identify various cluster sub-structures in nuclei as heavy as
9Be. The results for the unnormalised 4He : 3H p overlap
function in configuration space are shown in fig. 2, where
the error bars arise from the sampling procedure.

The overlap function has been parameterised by

ψ(r) =
√

Nα
1

r

6
∑

n=1

an e
−nαr, (3.1)

where α = 0.854 fm−1 represents the average for the 3H p
and 3Hen configurations. To ensure good behaviour at the
origin, the final parameter is fixed by a6 = −∑5

n=0 an,
while the other values are sequentially 5.1525, −2.8414,
−45.1886, 110.7401, and −100.3994. The normalisation
has been chosen such that

∫ ∞

0

r2 [ψ(r)]
2
dr = Nα. (3.2)

In the spirit of our approach here to pion production,
where only these cluster contributions are considered, it
is appropriate to assume that the p 3H and n 3He compo-
nents saturate the wave function and take Nα = 4 rather
than the reduced spectroscopic factor obtained in ref. [19].

4 Results and conclusions

In fig. 3 we show the prediction of the shape of the missing-
mass distribution for inclusive two-pion production at an

Fig. 3. Missing-mass distribution for the dd→ 4HeX reaction
measured at 570MeV [6]. The chain curve corresponds to π0π0

production within the two-step model, whereas the solid one
represents the sum of this and π+π− production. The predic-
tions are normalised to the integrated cross-section by multi-
plying by a factor of 17.6. The dotted and broken curves are
the similar predictions from phase space, again normalised to
the total rate.

excess energy of Q = 29MeV with respect to the 2π0

threshold. Though the general form is in good agreement
with the experimental data [6,7], the results are too low by
almost a factor of twenty! The peak of the distribution is
predicted to be a little to the right of that corresponding to
pure phase space, which is also shown. Such a feature was
clearly observed for the pd→ 3Heππ reaction at low ener-
gies [14], but the limited statistics in the dd case prevents
us from drawing firm conclusions here. Estimates in the
double-∆ model [12], which agreed convincingly with the
data in the resonance region, were even poorer compared
to the near-threshold data. Apart from being a similar
factor of twenty too low, this model also predicted signif-
icant structure in the mass distribution which is absent
from the experimental data.

The discrepancy is similar for the other low-energy
data [13], though here the acceptance was small and as-
sumptions had to be made in order to extract a total cross-
section. In fig. 4 we show the estimates of the total cross-
sections for the production of charged and neutral pions
within the two-step model.

The central problem for any model that attempts to
describe the dd→ 4Heππ cross-section at low energies is
that the production of isoscalar pion pairs is of a simi-
lar magnitude in deuteron-deuteron and proton-deuteron
collisions. Extrapolating the I = 0 pd→ 3Heππ cross-
section of ref. [4] from Q = 37MeV down to 29MeV,
where the dd→ 4Heππ cross-section was measured [6],
assuming a phase space Q2 behaviour, we see that

σtot(dd→ 4Heππ)

σtot(pd→ 3Heππ)
≈ 40 nb

70 nb
=

4

7
. (4.1)
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Fig. 4. Total cross-section for the dd→ 4Heππ reaction. The
experimental data from ref. [6] (star) and ref. [13] (circle) are
compared to the predictions of the two-step model scaled by a
factor of 17.6. The chain curve corresponds to π0π0 production,
the broken to π+π−, and the solid to their sum.

On the other hand, the production of the η-meson is
much weaker in the dd case, with the ratio of the squares
of the amplitudes being [17,18,21,22]

∣

∣f(dd→ 4He η)
∣

∣

2

∣

∣f(pd→ 3He η)
∣

∣

2
≈ 1

50
, (4.2)

though perhaps this would be increased by a factor of two
if corrections were made for the effects of the η-nucleus
final-state interaction. Since the low-energy pd→ 3Heππ,
pd→ 3He η, and dd→ 4He η cross-sections are all suc-
cessfully described by the two-step model, one might
therefore expect to undershoot the dd→ 4Heππ total
cross-section by a factor of 50×4/7 ≈ 30 in such a model.
This is to be compared to the 17.6 used to fit the data in
fig. 4. However, orders-of-magnitude comparisons of the
type made here do not take into account fully the spin-
parity considerations. For example, the dd→ 4Heππ pre-
diction would be increased by more than a factor of two if
the sign of the deuteron D-wave were arbitrarily reversed
in eq. (2.20).

Given that neither the two-step nor the double-∆
model seems capable of describing the magnitude of the
dd→ 4Heππ cross-section near threshold, one must seek
alternative explanations or modifications to the exist-
ing mechanisms. Other diagrams, such as that of the
impulse approximation where the process is driven by
pd→ 3Heππ with a spectator nucleon, give very small
cross-sections due to the large momentum transfer. We
have not included any specific ππ final-state interaction,
but the s-wave scattering lengths are relatively small [23]
and, in any case, the effects are implicitly included through
the use of empirical πN → ππN amplitudes [15].

The interaction of the low-energy pions with the final
4He nucleus might enhance the cross-section since it is

known that the p-wave pion-nucleus interaction is attrac-
tive near threshold [24]. However, the effect will steadily
diminish with energy and eventually change sign at the
resonance. Crude estimates indicate that any effects due
to such final-state interactions are likely to be less than
50%, even very close to threshold, and so they are very
unlikely to provide the explanation of the defect.

Now, although we have normalised the 4He wave func-
tion as if it consisted purely of p 3H/n 3He pairs, in reality
the 3H in such a nucleus is on average smaller than the
physical triton. Nevertheless, we have taken the ampli-
tudes for pd→ 3Heπ0 from the measured data. The same
criticism can be levelled at the double-∆ model, where
the final deuteron in the pp→ dπ+ input would really be
required for a small deuteron. If there were major correc-
tions due to such effects they would be likely to be present
at all energies and hence destroy the excellent agreement
with data achieved at higher energies [12]. Further inspi-
ration is therefore clearly needed to resolve this dilemma.

This work has been much influenced by long-standing discus-
sions with Pia Thörngren, from which the authors have ben-
efited greatly. One of the authors (CW) is appreciative of the
hospitality shown to him by Uppsala University. Support from
the EtaNet programme of the EU is gratefully acknowledged.
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